Assessing the Reliability of Species Distribution Models (SDMs) in the Face of Climate and **Ecosystem Regime Shifts: How Common is Non-Stationarity?**

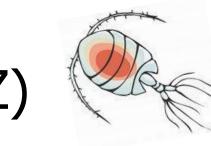
Introduction

- Species distribution models (SDMs) are a common tool for projecting how climate change impacts living marine resources.
- SDMs assume stationary relationships between organisms and the environment.
- This assumption was violated during the 2014-2016 marine heat wave affecting the California Current System (Muhling et al., 2020).

How frequently has non-stationarity been observed during previous climate and ecosystem regime shifts? Methods **Target Species** Northern anchovy Jack mackerel Pacific sardine **Environmental variables** Salinity (S), Dissolved oxygen Temperature (T), **Zoo-** $(0), \frown$ plankton displacement volume (Z)

Types of SDMs: Generalized Additive Models (GAMs; max. 4 knots), Non-Parametric Probabilistic Ecological Niche (NPPEN) models (Beaugrand *et al.*, 2011)

Types of Regime Shifts: 1) Pacific Decadal Oscillation (PDO); 2) Change points in detected in time series of environmental variables and fish spawning stock biomass (SSB) with Ruggieri (2013) algorithm


Rebecca G. Asch, East Carolina University, Department of Biology, Greenville, NC. Email: aschr16@ecu.edu. 🔅 ECU

Results

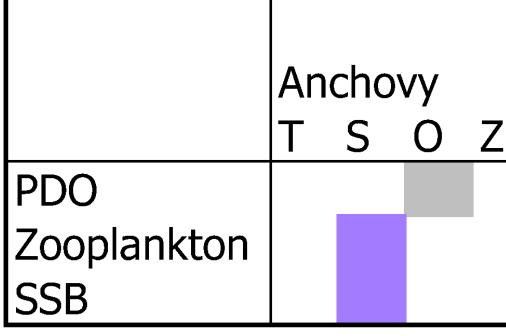
Change Point Detection: Change points were

detected in the time series of: 1) Zooplankton volume in 1968 and 1983; 2) Anchovy SSB in 1963; 3) Sardine SSB in 1963 and 1997.

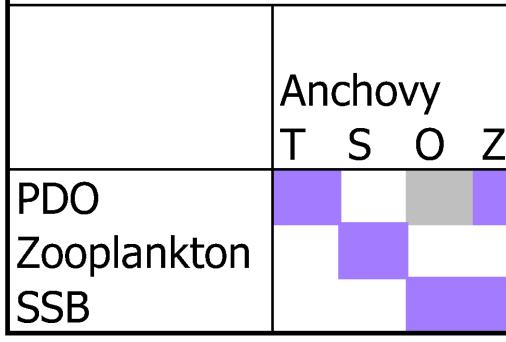
Assessment of Non-Stationarity: Incidents of

non-stationarity associated with regime shift were assessed with six metrics. White = stationary relationship; Purple = non-stationarity; Grey = N/A

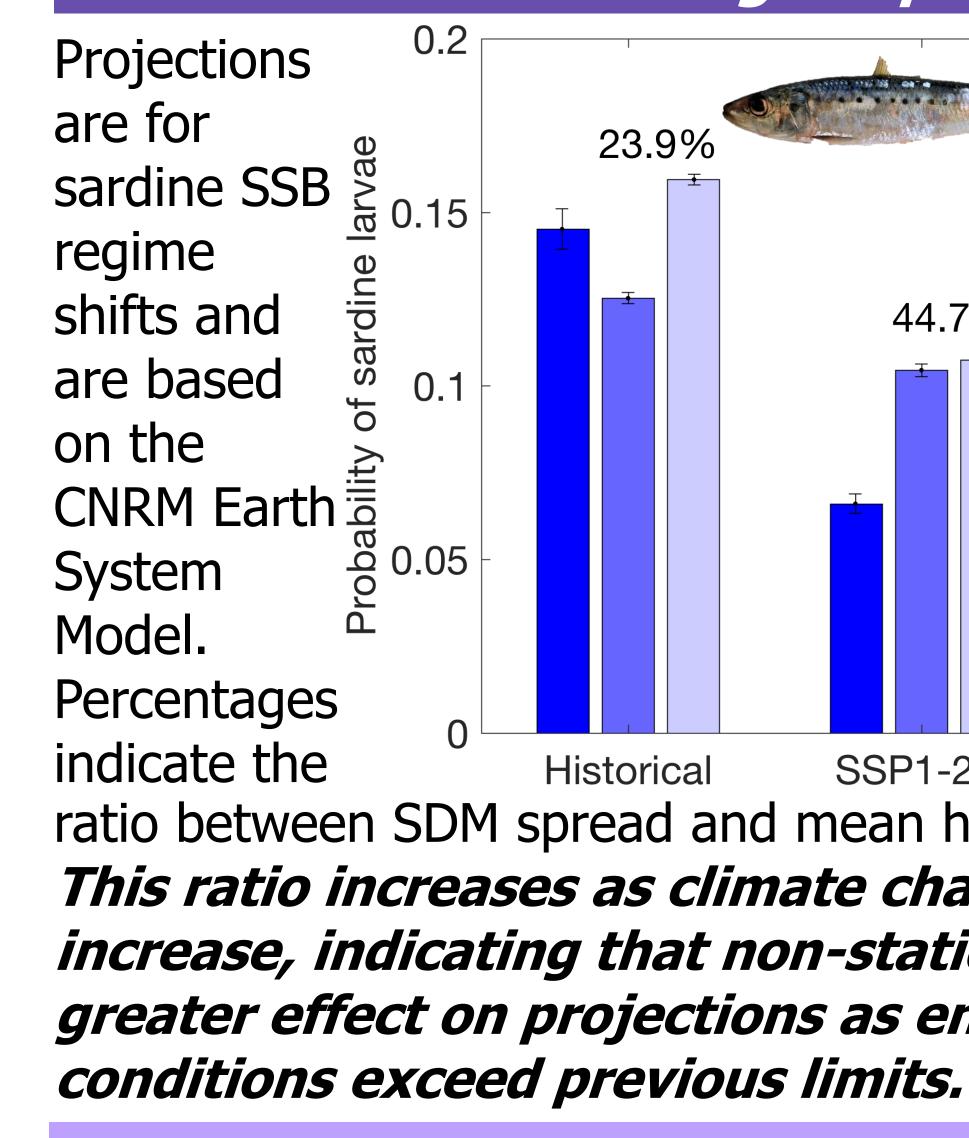
Ancho	vy						Ch	uh			Ja				
	vy							ub			ימין				
- ~			129	Sardine				mackerel				mackerel			
S	0	Ζ	T	S	0	Ζ	T	S	0	Ζ	T	S	0	Ζ	
		earity										SOZTSOZTSOZT BANK SOZTSOZT Barity			


Metric 2: Li	nea	arity	Y														
										ub			Jao	ck			
	An	Anchovy			Sa	Sardine				mackerel				mackerel			
	Т	S	0	Ζ	Т	S	0	Ζ	Т	S	0	Ζ	T	S	0	Ζ	
PDO																	
PDO Zooplankton																	
SSB																	

Metric 3: Ra	Metric 3: Rank order of deviance explained															
	Δr	Anchovy				rdir	ופ			iub acke	erel		Jack mackerel			
			-	Ζ				Ζ								Ζ
PDO																
Zooplankton SSB																

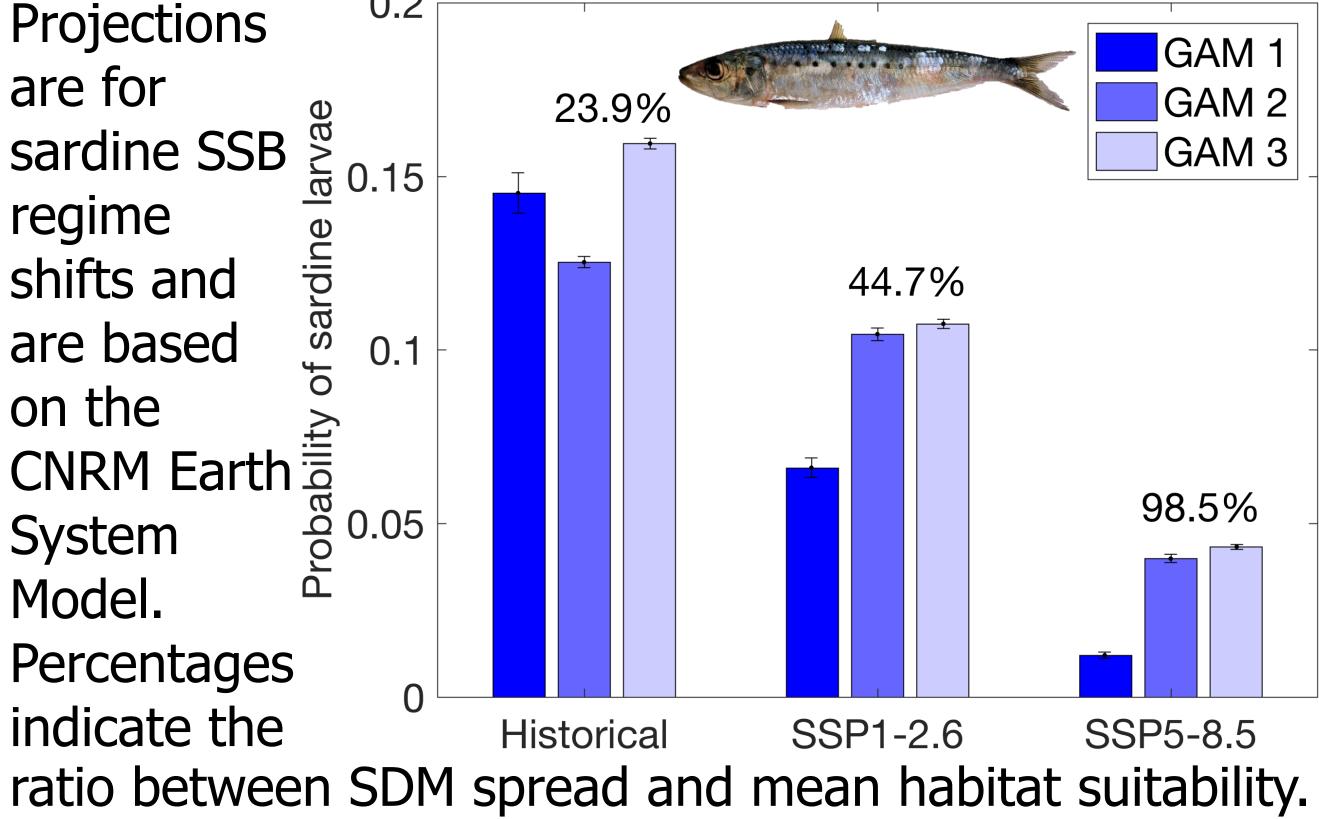

Matria A. Desmanas auros abana

Metric 4: Re	esp	ons	se c	curv	e s	sna	pe										
									Ch				Ja				
	An	Anchovy S				Sardine				mackerel				mackerel			
	Т	S	0	Ζ	T	S	0	Ζ	Т	S	0	Ζ	Т	S	0	Ζ	
PDO Zooplankton																	
Zooplankton																	
SSB																	


Metric 5: Degree of res

Metric 6: Preferred env

How could this affect projections of future climate change impacts?



Beaugrand G., Lenoir S., Ibañez F., Manté C. 2011. A new model to assess the probability of occurrence of a species, based on presence-only data. Mar Ecol Prog Ser 424:175-190. Muhling B.A., Brodie S., Smith J.A., Tommasi D., et al. 2020. Predictability of species distributions deteriorates under novel environmental conditions in the California Current System. Front Mar Sci 7:589 Ruggieri E. 2013. A Bayesian approach to detecting change points in climatic records. Int J Climatol 33:520-528.

sp	ponsiveness														
					Ch	ub			Jack						
	Sar	din	e		ma	acke	erel		mackerel						
7	Т	S	0	Ζ	Т	S	0	Ζ	Т	S	0	Ζ			

vi	ron	me	nta	l ra	ng	е								
					Ch	ub			Jack					
	Sar	din	е		ma	cke	rel		mackerel					
7	Т	S	0	Ζ	Т	S	0	Ζ	Т	S	0	Ζ		

This ratio increases as climate change impacts increase, indicating that non-stationarity has a greater effect on projections as environmental

References